The Reduction of Nitriles to Aldehydes: Applications of Raney Nickel/Sodium Hypophosphite Monohydrate, of Raney Nickel/Formic Acid, or of Raney(Ni/Al)Alloy/Formic Acid, Respectively†
نویسندگان
چکیده
The three title reductant systems have significant advantages in generating aldehydes from nitriles. These include: the utilization of convenient hydrogen sources, namely, sodium hypophosphite monohydrate and formic acid, respectively, and of the relatively inexpensive Raney nickel and Raney (Ni/Al) alloy; the convenience of conducting the reaction(s) in aqueous media at ambient temperatures and pressures, and avoiding the use of trapping agents (except when transforming glycosyl nitriles (vide infra)) and of hydrogen cylinders. Numerous examples of the utilization of the title systems are presented (mostly from the more recent literature) that demonstrate the utility of the respective methods in transforming a solo cyano group, or when accompanied by other chemosensitive functions in a structure, to the corresponding aldehyde. Such substrates include benzonitriles, glycosyl nitriles, O-, Nand S-containing heterocyclic nitriles, aliphatic-aromatic situations, and more complex fused heterocyclic and carbocyclic scaffolds. The review reports modifications of the title methods and several notable steric effects.
منابع مشابه
A Fundamental Study of Quantitative Desulfurization of Sulfur Containing Amino Acids by Raney Nickel and its Character
Raney nickel catalyst alone removes sulfur in reasonable yield from organic sulfur compounds, such as thiols, thioethers, disulfides, hemithioacetals, hemithioketals, diketals, thioamides, thiolesters, thiophenes, thioazoles, sulfoxides, sulfones, isothiocyanates, thioureas, and also organoselenium and tellurium compounds. This desulfurization reaction, therefore, has been used for the solution...
متن کاملSelective reduction of condensed N-heterocycles using water as a solvent and a hydrogen source.
The reduction of unprotected indoles and quinolines is described using water as a hydrogen source. The method is based on the application of a RANEY® type Ni-Al alloy in an aqueous medium. During the reaction the Al content of the alloy, used as reductants, reacts with water in situ providing hydrogen and a RANEY® Ni catalyst, thus the alloy serves as a hydrogen generator as well as a hydrogena...
متن کاملRaney-nickel Catalysts Produced by Mechanical Alloying
Raney catalysts were prepared by a combination of mechanical alloying and leaching as an alternative in the synthesis of Raney-Nickel catalysts. Binary Al-Ni and ternary Al-Ni-Fe alloys with nominal compositions Al65Ni35, Al75Ni25, Al65Ni30Fe5, Al75Ni20Fe5 (in atomic percent), were processed from pure elemental powders; they consisted mainly of the intermetallic B2 AlNi phase. Aluminum was sele...
متن کاملCatalytic Studies of Sodium Hydroxide and Carbon Monoxide Reaction
We have studied the effect of ball milling on alumina mixed nickel, magnetite and Raney nickel on the reaction: 2NaOH(s) + CO (g) = Na2CO3 (s) + H2 (g) and determined the optimum particle size for the catalysts. The best performance was shown by a 2 h ball milled Raney nickel with average crystallite size of 209 Å. This reaction serves the dual purpose of carbon sequestration and yielding hydro...
متن کاملPolymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions.
Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008